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2Fieldoperator

Denote SG1H selfadj operators in 1H

O 1H densely defined operators in 1H

JefeOperatorinI
Pair AD D D CIH 4 1inmap A D 1H

eeidr If Da is done in 1H Air dense

cooperator sup HAH FEDA 14151 co

Lodoperator An operator B in 1H is closed if

to graph B f BCF ft DB CIHxIH is closed

where

IHxIH 1H 1H it's Hilbert space structure

is givenby the innerprd
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Adjoint of an operator

Every densely defined operator on 1H has an adjoint A
refined in the following way
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A isDense Bounded A is cont unique linear
cont continuation to all of 1H exists

Selfadjotoperator

A is a selfadjoint operator if DA Da and A f A
for all f EDA D
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An operator A which is densely defined sit
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Self adjoint operators are trivially symmetric and closed
closed since adjoint operators are closed ingeneral
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2 For a self adj operator A TCA is completely
contained in IR
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or a self adj operator A there exists a unique

representation U IR UCH satisfying
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for each FEDA Notion U is denoted UCE éitA
and A is called infinitesimal generator of Uct

Converse of above prop
Im Effhta unitary representation of IR in the
Hilbert space 1H Then the operator A defined by
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operator valued distributions to describe quantum
fields and not merely a map from the manifold

M.IR to 50 because

In classical field theories the Poisson bracket

of a field at point x
y EM with x y

equal time is of the form
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But this can only be described by operator valued
distributions due to right side of the eqn rather

than a mere operator valued map



A field operator or quantum fied is defined as

an operator valued distribution ie
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2 The induced
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3 For each VED WEIH the assignment
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P preserves causal structure space like separatedness

P acts on S IRP as

h f x f h x with g Cho f gb

this action is continuous

Elements of P are written as q A where qEMAC.ie
q A f a f A Gc q

The relativistic invariance of a quantum system wit

Minkowski
space is in general given by a projective

rep P U PCH of the Poincarégrp P in the

space of states IPCIH of the quantum system

By thm 4.8 we can lift this rep uniquely to
a unitary rep ofthedouble cover of P This
covering

is also called P

Unitary rep of
Poincaré
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U P UCH



Cq A U q M

Since IR C P is abelian we an apply
Stone's thm component wise to obtain the restriction

of U to M in the form

q 1 exp igp e'GP q'p
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Po PD are self adj operators on H

Po is interpreted as energy operator
P j 70

Impotent of momentum

Wittiffffman QFT WAFT in D dimensions

consistsof
1
space of states ie projective space PCH of a
separable complex Hilbert space 1H

2 Vacuum vector SETH of norm 1
3 A unitary rep U P OCH of Poincarégp
P and of the covering grp of Poincarégp

4 A collection of field operators Ia AEI
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with a dense subspace DCH as their
common domain ie Diff contains D for
all atI fE 8 sit R is in D

The above data should satisfy the following four
axioms

AIWDCovance
1 Uq As 2 for all Cq NEP

UCq NDC D

2 DC H is invariant in the sense f DC
FES AEI

3 On D

U q n Ia f Uca I CDF

FES Cq M EP

Actions on 1H and S are equivariat Pack
on End D by conjugation



AxiomCWIlocality
IAaq mmeD if the

supports of f and g S are space like separatico

ie Ia f Ib g Ipg I f In f Ilg 0

Axiom W3 spectrum condition

The joint spectrum of the operator Pj is
lonkined in the forward cone C

Axiom Wg Uniqueness of vacuum

The only vectors in 1H left invariant by the
translations U q 1qEMarescalarmultiples.fr

Remote

1 For real valued ft S Ia t should be

essentially self adjoint there exists a self adjoint
operator which restricts to Iacf



2 Axiom WI is for scalar fields which transform
under trivial rep of L It fields transform
according to non trivial fin dim complex or

real rep R L GLCW of double cover of
L then 2 has to be replaced by

UCq.ME f UCq n ERju A Iulant

W is identified with IRM or 4m
RCA matrices RjuCM
Ia are components of fields which can be

grouped together to a vector I Im

3 The axiom w 2 describes only boronic fields
For fermionic case read Chapter 10

4 Axiom W3 eigenvalues pe of Pe groupeo
into p p PD 1 satisfies pE Ct e

with Po as energy operator this says that
the system has no negative energy states

5 P2P P PI is mass squared

operator with condition p 20 for each D tupleof



eigenvalues pe ofPg if W3 is satisfied

6 In addition to CWD WA in many cases

the following completeness condition is added c

Subspace D CD spanned by all vectors

Ea fi Iaffz Iam Jm 2

is dense in D and thus dense in 1H

Example FreeBoonicQFI
Construct a WQFT for a quantized boson of mass
m70 in D 4 3 dimensional space We define
ede a quantized boson of mass m 70 in D 4 as

a field operator which satisfies the following
properties

I SCIR SOCIH on a Hilbert

space 1H sit It t.ge 8
1 I satisfies

I Bf mF HFES
2 I obeys the commutation relation
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The construction of such a field correspondingHilbert

space 1H which obeys WQFT axioms is a
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Completion of D wit the above innerprol is denoted

by 1H the Fock space the desired
Hilbert

space

Now let's construct the fields
The operator Iff f ES defined on g g g
E D by



touriertrans

f g n 3N mF 3 gn 3,311 13 13

F 3 9 11 if En
where means that this variable is omitted

The above HI the quantum field satisfies

WQFT axioms indeed is a WQFT now Checking
is direct verification which is omitted here

Another reason why we describe fields as operator

valued distributions not merely operator valued

maps

let It be a field in a WQFT which a be

realized as a map E M 0 where I
belong to the fields of the WQFT too Then

G CSL is the constant operator for some cE
ie nothing interesting happens
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