

S1) Distributions

QFT \rightarrow Q fields: self-adj operators of \mathbb{C} , sep, Hilbert (H)

\rightarrow Q states: lines through 0 of H , (on points in $P = P(H)$)

Defn: (Schwarz space of rapidly decreasing smooth functions)

$S(\mathbb{R}^n)$: complex vector space of fns $f: \mathbb{R}^n \rightarrow \mathbb{C}$ with continuous partial derivative of any order for which

$$\forall p, k \in \mathbb{N} \quad \|f\|_{p,k} := \sup_{|\alpha| \leq p} \sup_{x \in \mathbb{R}^n} |\partial^\alpha f(x)| (1 + |x|^2)^k < \infty$$

$(|\alpha| = \alpha_1 + \dots + \alpha_n)$ multi-index, $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$

$S(\mathbb{R}^n)$'s elements are test fns. $\|\cdot\|_{p,k}$ is a seminorm

Defn:

A tempered distribution T is a linear functional $T: S \rightarrow \mathbb{C}$ which is cont. wrt $\|\cdot\|_{p,k}$

Meaning: If (f_j) $\xrightarrow{\text{converges}}$ $f \in S$ (in the sense that

$$\lim_{j \rightarrow \infty} \|f_j - f\|_{p,k} = 0 \quad (\forall p, k \in \mathbb{N})$$
, then:

$(T(f_j))$ $\xrightarrow{\text{converges}}$ $T(f)$ (in the same sense above)

Vert space of temp. dis $\equiv \mathcal{S}'(\mathbb{R}^n)$

Ex:-

1) Some distn rep. by

$T_g(f) := \int_{\mathbb{R}^n} g(x) f(x) dx, f \in \mathcal{S}$

$g: \text{measurable bounded}$

2) Not rep. by fn.

$$\begin{aligned}\delta_y: \mathcal{S} &\rightarrow \mathbb{C} \\ f &\mapsto f(y)\end{aligned}$$

Nevertheless, sometimes, $\delta_y \equiv \delta(x-y)$ & use formal integral

$$\delta_y(f) = f(y) = \int_{\mathbb{R}^n} \delta(x-y) f(x) dx$$

Derivatives:

$$\frac{\partial}{\partial q_j} T(f) := -T\left(\frac{\partial}{\partial q_j} f\right)$$

Higher derivatives:

$$\partial^\alpha T(f) := (-1)^{|\alpha|} T(\partial^\alpha f), f \in \mathcal{S}$$

Every distn:

$$T = \sum_{0 \leq k \leq k} \partial^\alpha T_g \quad (\exists g: \mathbb{R}^n \rightarrow \mathbb{C})$$

PDE

$$P(X) = c_\alpha X^\alpha$$

$$P(-i\partial) = c_\alpha (-i\partial)^\alpha = \sum c_{\alpha_1, \dots, \alpha_n} \partial_1^{\alpha_1} \dots \partial_n^{\alpha_n}$$

$$P(-i\partial)u = v$$

Eq:-

$$\square = \partial_0^2 - \underbrace{(\partial_1^2 + \dots + \partial_{D-1}^2)}_{\Delta} = \partial_0^2 - \Delta$$

$$\text{hence } P = -X_0^2 + X_1^2 + \dots + X_{D-1}^2$$

Fundamental soln. g is soln. to:

$$P(-i\partial)g = s$$

Prop.

Such a fund. soln. provides soln. to inhom.

PDE $P(-i\partial)u = v$ by

$$P(-i\partial)(g * v) = T_v$$

where $(g * v)(u) := g(v * u) = g \left(\int_{\mathbb{R}^n} v(y) u(x-y) dy \right)$

Proof:

$$(\text{check } \delta * v)(u) = \delta(v * u) = \delta \left(\int_{\mathbb{R}^n} v(y) u(x-y) dy \right)$$

$$= \int_{\mathbb{R}^n} v(y) u(x-y) dy = T_v(u)$$

$$(\text{or } \delta * v = v)$$

$(\text{check } v) = T_u$ where u is the
soln. to $P(-i\partial)u = v$

□

Fund. soln. are obtained via Fourier transformations:

$$F(u) = \hat{u}(p) := \int_{\mathbb{R}^n} u(x) e^{ix \cdot p} dx \quad p \in (\mathbb{R}^1, D-1)^1$$

$u: \mathbb{R}^n \rightarrow \mathbb{C}$

$F(u) = \hat{u} \in S$

\downarrow
dual space

$F: S \rightarrow S$ (Fourier trans. is lin, cont, invertible) - We can perform Fourier transf. for distributions too in the following:

Defn: $F^1: S' \rightarrow S'$

$$\downarrow \quad T \mapsto T \circ F$$

Prop lin, cont., invertible too.

$$1) F^1(T_g)(v) = T_{F(g)}(v) \quad \text{Proof: Direct calculation} \quad \square$$

$$2) \quad F(\partial_k u) = -i p_k F(u)$$

$$\underline{\text{Proof}}: F(\partial_k u)(p) = \int \partial_k u(x) e^{ix \cdot p} dx = - \int u(x) i p_k e^{ix \cdot p} dx$$

\uparrow
 partial
 int. □

$$= -i p_k F(u)(p)$$

|| by for higher order derivatives: $F(\partial^k u) = (-ip)^k F(u)$

$$\text{So, } P(-i\partial)u = v \Rightarrow P(p)\hat{u} = \hat{v} \quad \text{division problem for distri}$$

$$PT(u) = T(Pu)$$

"Solving a division problem" is: Find a distribution T s.t.

$$PT = f$$

Proposition:

How to determine fund. soln. of $P(-i\partial)u = v$?

1) Solve Div. problem $PT = 1$ for T .

$$2) \quad F^{-1}(T)$$

Proof:

$h = h_p$ inv. fourier transform $F^{-1}(T)$ of soln.

$PT = 1 \quad \text{ie) } P\hat{h} = 1$. Claim h is fund. soln. to

$P(-i\partial)u = v$. Reason

$$F(P(-i\partial)u) = P(p)\hat{u} = 1$$

$$\Rightarrow P(-i\partial)u = S$$

KG

fund.
soln.
of

$$(\square + m^2)u = v \quad (\text{free bosonic classical particle of mass } m > 0)$$

By previous result

$$(-p^2 + m^2)T = 1$$

$$T = (m^2 - p^2)^{-1}$$

↓

Corres. fund. soln.

$$u(x) = (2\pi)^{-D} \int_{\mathbb{R}^D} (m^2 - p^2)^{-1} e^{-ix \cdot p} dp$$

111^{1y}

$$(\square + m^2)\phi = 0 \quad \text{solns. are}$$

$$\phi(t, x) = (2\pi)^D \int_{\mathbb{R}^{D-1}} a(\mathbf{p}) e^{i(\mathbf{p} \cdot \mathbf{x} - \omega(\mathbf{p})t)} + a^*(\mathbf{p}) e^{-i(\mathbf{p} \cdot \mathbf{x} - \omega(\mathbf{p})t)}$$

$$+ \frac{1}{2\omega(\mathbf{p})} d\mathbf{p}$$

$$a, a^* \in S(\mathbb{R}^D)'$$

$$\omega(\mathbf{p}) = \sqrt{\mathbf{p}^2 + m^2}$$

§2) Field operators

Denote $S\mathcal{G}(\mathbb{H})$ self adj. operators in \mathbb{H}

$\mathcal{G}(\mathbb{H})$ densely defined operators in \mathbb{H}

Defn: (Operator in \mathbb{H}):

Pair (A, D) $D = D_A \subset \mathbb{H}$, \mathbb{C} -lin. map $A: D \rightarrow \mathbb{H}$

Densely-defined operator: If D_A is dense in $\mathbb{H} \Rightarrow A$ is dense

Bounded operator: $\sup \{ \|Af\| \mid f \in D_A, \|f\| \leq 1 \} < \infty$

Closed operator: An operator B in \mathbb{H} is closed if

its graph $\Gamma(B) = \{(f, B(f)) \mid f \in D_B\} \subset \mathbb{H} \times \mathbb{H}$ is closed
where,

$\mathbb{H} \times \mathbb{H} \cong \mathbb{H} \oplus \mathbb{H}$ & its Hilbert space structure
is given by the inner prod:

$$\langle (f, f'), (g, g') \rangle = \langle f, g \rangle + \langle f', g' \rangle$$

Adjoint of an operator:

Every densely defined operator on \mathbb{H} has an "adjoint," A^*
defined in the following way:

For A , define A^* with

$$D_{A^*} = \{f \in H \mid \exists h \in H \quad \forall g \in D_A : \langle h, g \rangle = \langle f, Ag \rangle \text{ and}$$

$$\langle A^*f, g \rangle := \langle f, Ag \rangle, \quad f \in D_{A^*}, \quad g \in D_A$$

Prop:

A is Dense + Bounded $\Rightarrow A$ is cont. & unique linear
cont. continuation to all of H exists.

Self-adjoint operator:

A is a self-adjoint operator if $D_A = D_{A^*}$ and $A^*f = Af$
for all $f \in D_A (= D_{A^*})$

Symmetric operator:

An operator, A which is densely defined s.t.

$$\langle Af, g \rangle = \langle f, Ag \rangle, \quad f, g \in D_A$$

Prop:-

Self-adjoint operators are trivially symmetric and closed
(closed since adjoint operators are closed in general)

Defn. (Spectrum of a closed operator):

For a closed operator, A denote

$$\sigma(A) = \left\{ \lambda \in \mathbb{C} \mid (A - \lambda i \text{id}_H)^{-1} \text{ does not exist as a bounded operator} \right\}$$

called Spectrum of A.

Prop:

- 1) For a closed operator A, $\sigma(A)$ is a closed subset of \mathbb{C}
- 2) For a self-adj. operator A, $\sigma(A)$ is completely contained in \mathbb{R}

Prop:

For a self-adj. operator A, there exists a unique representation $U: \mathbb{R} \rightarrow U(H)$ satisfying

$$\lim_{t \rightarrow 0} \frac{U(t)f - f}{t} = -iAf$$

for each $f \in D_A$. Notation: U is denoted $U(t) = e^{-itA}$, and A is called "infinitesimal generator of $U(t)$ ".

(Converse of above prop:

Thm: (Stone's thm)

Let U be a unitary representation of \mathbb{R} in the Hilbert space H . Then the operator A defined by:

$$Af := \lim_{t \rightarrow 0} i \left(\frac{U(t)f - f}{t} \right)$$

in the domain in which this limit exists wrt norm of \mathcal{H} , is self-adjoint & "generated" (in the prev. proposition's sense) U . i.e) $U(t) = e^{-itA}$, $t \in \mathbb{R}$.

Field operators:

Analogue of classical fields in QFT. You need operator valued distributions to describe quantum fields (and not merely a map from the manifold $M = \mathbb{R}^{1, D-1}$ to SO) because:

In classical field theories, the Poisson bracket of a field ϕ at points $x, y \in M$ with $x^0 = y^0$ (equal time) is of the form

$$\{ \phi(x), \phi(y) \} = \delta(x - y)$$

where $x = (x^1, \dots, x^{D-1})$ } the space parts of x & y .
 $y = (y^1, \dots, y^{D-1})$ }

But this can only be described by operator valued distributions (due to right side of the eqn) rather than a mere operator valued map.

Defn:

A field operator (D) quantum field is defined as an operator-valued distribution i.e)

$$\Phi: S(\mathbb{R}^n) \rightarrow \mathcal{O}$$

s.t. there exists a dense subspace $\mathcal{D}(H)$ satisfying

- 1) For each $f \in S$, the domain of defn. $D_{\Phi(f)}$ contains \mathcal{D} .
- 2) The induced map $S \rightarrow \text{End}(\mathcal{D})$ is linear
 $f \mapsto \Phi(f)|_{\mathcal{D}}$
- 3) For each $v \in \mathcal{D}$, $w \in H$, the assignment
 $f \mapsto \langle w, \Phi(f)(v) \rangle$ is a tempered distribution

§3) Wightman axioms

Relativistic invariance:

$M = \mathbb{R}^{1,3}$ (or sometimes $\mathbb{R}^{1, D-1}$) with Lorentz metric

$$x^2 = \langle x, x \rangle = \dot{x}^i \dot{x}^i - \sum_{j=1}^{D-1} x^j x^j \quad (x = (x^0, \dots, x^{D-1}) \in M)$$

Defn:

Two subsets $X, Y \subset M$ are called space-like separated if for any $x \in X$ and $y \in Y$, the condition $(x-y)^2 < 0$ is satisfied, that is

$$(x^0 - y^0)^2 < \sum_{j=1}^{D-1} (x^j - y^j)^2$$

Defn:

The forward cone $C_+ := \{x \in M \mid x^2 = \langle x, x \rangle \geq 0, x^0 \geq 0\}$

Time-like separated from origin:

Causal order: $(x \geq y) \Leftrightarrow (x-y \in C_+)$

Relativistic invariance of classical point particles in $\mathbb{R}^{1, D-1}$ is described by Poincaré grp $P := (I, D-1)$

$$P \cong L \times \mathbb{R}^h$$

$(L = \text{Lorentz grp}: SO_0(1, D-1) \subset GL(D, \mathbb{R}))$

identity component

P preserves causal structure & space-like separateness

P acts on $S(\mathbb{R}^D)$ as:

$$\{ h \cdot f(x) := f(h^{-1}x) \text{ with } g \cdot (h \cdot f) = (g \cdot h) \cdot f \}$$

This action is continuous.

Elements of P are written as: (q, Λ) where $q \in M$, $\Lambda \in L$. i.e)

$$(q, \Lambda) f(x) = f(\Lambda^{-1}(x-q))$$

The relativistic invariance of a quantum system wrt Minkowski space is in general given by a projective rep $P \rightarrow U(P(H))$ of the Poincaré grp, P in the space of states, $P(H)$ of the quantum system.

(By Thm-4.8, we can lift this rep. uniquely to a unitary rep of the double cover of P . This covering is also called \tilde{P})

Unitary rep. of Poincaré grp \tilde{P}

$$U: \tilde{P} \rightarrow U(H)$$

$$(q, \lambda) \mapsto U(q, \lambda)$$

Since $\mathbb{R}^{1, D-1} \subset P$ is abelian, we can apply Stone's thm component-wise to obtain the restriction of U to M in the form

$$U(q, 1) = \exp(iqP) = e^{i(q^0 P_0 - q^1 P_1 - \dots - q^{D-1} P_{D-1})}$$

$q \in \mathbb{R}^{1, D-1}$

P_0, \dots, P_{D-1} are self-adj. operators on H .

P_0 is interpreted as energy operator & P_j ($j \geq 1$) as components of momentum.

Wightman Axioms:

A Wightman QFT (WQFT) in D dimensions consists of:

1) Space of states \mathcal{S} $\in H$ projective space $P(H)$ of a separable complex Hilbert space H

2) Vacuum vector $\Omega \in H$ of norm 1

3) A unitary rep $U: P \rightarrow U(H)$ of Poincaré grp P and of the covering grp. of Poincaré grp

4) A collection of field operators Φ_a ($a \in I$)

$$\underline{\Phi}_a : S(\mathcal{C}^D) \rightarrow \mathcal{O}$$

with a dense subspace $D \subset H$ as their common domain (ie) $D_{\underline{\Phi}_a(f)}$ containing D for all $a \in I, f \in S$ s.t. Ω is in D .

The above data should satisfy the following four axioms:

Axiom (WD) : Covariance

$$1) \quad \left. \begin{array}{l} U(q, \Lambda) \Omega = \Omega \\ U(q, \Lambda) D \subset D \end{array} \right\} \text{ for all } (q, \Lambda) \in P$$

$$2) \quad D \subset H \text{ is invariant in the sense } \underline{\Phi}_a(f) D \subset D \\ \forall f \in S, a \in I$$

3) On D ,

$$\left\{ \begin{array}{l} (U(q, \Lambda) \underline{\Phi}_a(f) U(q, \Lambda))^* = \underline{\Phi}_a(q, \Lambda) f \\ \forall f \in S, (q, \Lambda) \in P \end{array} \right.$$

(Actions on H and S are equivariant & P acts on $\text{End}(D)$ by conjugation)

Axiom (W2): Locality

$\underline{\Phi}_a(f)$ and $\underline{\Phi}_b(g)$ commute on \mathcal{D} if the

supports of f and $g \in \mathcal{S}$ are space-like separated.

ie) $\underline{\Phi}_a(f)\underline{\Phi}_b(g) - \underline{\Phi}_b(g)\underline{\Phi}_a(f) =: [\underline{\Phi}_a(f), \underline{\Phi}_b(g)] = 0$

Axiom (W3): Spectrum condition:

The joint spectrum of the operators P_j is contained in the forward cone C_+

Axiom (W4): Uniqueness of vacuum:

The only vectors in \mathcal{H} left invariant by the transformations $U(q, t)$, $q \in M$ are scalar multiples of Ω

Remarks:

- 1) For real valued $f \in \mathcal{S}$, $\underline{\Phi}_a(f)$ should be essentially self adjoint (there exists a self adjoint operator which restricts to $\underline{\Phi}_a(f)$)

2) Axiom (W1) is for scalar fields which transform under trivial rep of L . If fields transform according to non-trivial, fin. dim complex or real rep $R: L \rightarrow GL(W)$ of double cover of L , then (W2) has to be replaced by

$$U(q, \Lambda) \underline{\Phi}_j(f) U(q, \Lambda)^* = \sum_{k=1}^m R_{jk}(\Lambda^{-1}) \underline{\Phi}_k(q, \Lambda) f$$

- W is identified with \mathbb{R}^m (or \mathbb{C}^m)
- $R(\Lambda)$ matrices ($R_{jk}(\Lambda)$)
- $\underline{\Phi}_a$ are components of fields which can be grouped together to a vector ($\underline{\Phi}_1, \dots, \underline{\Phi}_m$)

3) The axiom (W2) describes only bosonic fields.
(For fermionic case, read Chapter-10)

4) Axiom (W3) \Rightarrow eigenvalues p_ξ of P_ξ grouped into $p = (p_0, \dots, p_{D-1})$ satisfies $p \in C_+ \cdot \mathbb{R}$ with P_0 as energy operator, this says that the system has no negative energy states

5) $P^2 = P_0^2 - P_1^2 - \dots - P_{D-1}^2$ is mass squared operator with condition $p^2 \geq 0$ for each D -tuple of

eigenvalues $p_{\mathbf{q}}$ of $P_{\mathbf{q}}$ if (W3) is satisfied.

6) In addition to (W1) - (W4), in many cases the following completeness condition is added:

Subspace $D_0 \subset D$ spanned by all vectors

$$\Phi_{a_1}(f_1) \Phi_{a_2}(f_2) \dots \Phi_{a_m}(f_m) \mathcal{Q}$$

is dense in D and thus dense in H

Example: (Free Bosonic QFT)

Construct a WQFT for a quantized boson of mass $m > 0$ in $D=4$ (3 dimensional space). We "define" such a quantized boson of mass $m > 0$ in $D=4$ as a field operator which satisfies the following properties:

$\Phi : \mathcal{S}(\mathbb{R}^4) \rightarrow \mathcal{S}(H)$ on a Hilbert space, H s.t. If $f, g \in \mathcal{S}$,

1) Φ satisfies

$$\Phi(\square f + m^2 f) = 0 \quad \forall f \in \mathcal{S}$$

2) Φ obeys the commutation relation

$$[\hat{\phi}(f), \hat{\phi}(g)] = -i \int_{\mathbb{R}^4 \times \mathbb{R}^4} f(x) D_m(x-y) g(y) dx dy$$

$$\text{where } D_m(g) := i(2\pi)^{-3} \int_{\mathbb{R}^D} \text{sgn}(p_0) \delta(p^2 - m^2) e^{-ip \cdot x} dp$$

The construction of such a field & corresponding Hilbert space, \mathcal{H} (which obeys WQFT axioms) is a Fock space construction. Let's construct \mathcal{H} first:

$$\mathcal{H}_1 \simeq \mathcal{S}(\Gamma_m) \simeq \mathcal{S}(\mathbb{R}^3) \text{ where}$$

$$\Gamma_m = \{ p \in (\mathbb{R}^{1, D-1})' \mid p^2 = m^2, p_0 > 0 \}$$

The isomorphism is induced by the global chart

$$\eta: \mathbb{R}^3 \rightarrow \Gamma_m$$

$$p \mapsto (\omega(p), p) \text{ where } \omega(p) = \sqrt{p^2 + m^2}$$

\mathcal{H}_1 is dense in $\mathcal{H}_1 := L^2(\Gamma_m, d\lambda_m) \xrightarrow{\text{Lorentz-invariant measure}}$ complex Hilbert space of square integrable fns on Γ_m

Let \mathcal{H}_N denote the space of rapidly decreasing fns. on N -fold prod of Γ_m which are symmetric in variable $(p_1, \dots, p_N) \in \Gamma_m^N$. \mathcal{H}_N has the

inner prd:

$$\langle u, v \rangle := \int_{\Gamma_m^N} \bar{u}(\bar{z}_1, \dots, \bar{z}_N) v(\bar{z}_1, \dots, \bar{z}_N) d\lambda_m(\bar{z}_N)$$

where points in Γ_m are denoted by \bar{z}_j (or) \bar{z}

Denote the direct sum

$$\mathcal{D} := \bigoplus_{N=0}^{\infty} H_N \quad (H_0 = \mathbb{C}, \quad Q := 1 \in H_0)$$

has a inner prd:

$$\langle f, g \rangle := \bar{f}_0 g_0 + \sum_{N \geq 1} \frac{1}{N!} \langle f_N, g_N \rangle$$

where $f = (f_0, f_1, \dots) \quad \left. \begin{array}{l} \\ \end{array} \right\} \in \mathcal{D}$

$$g = (g_0, g_1, \dots) \quad \left. \begin{array}{l} \\ \end{array} \right\} \in \mathcal{D}$$

Completion of \mathcal{D} wrt the above inner prd. is denoted by H , the Fock space, the desired Hilbert space.

Now let's construct the fields:

The operators $\hat{\Phi}(f)$, $f \in \mathcal{S}$ defined on $g = (g_0, g_1, \dots)$ $\in \mathcal{D}$ by:

$$(\underline{\Phi}(f)g)_N(\bar{z}_1, \dots, \bar{z}_N) := \int_m \hat{f}(\bar{z}) g_{N+1}(\bar{z}, \bar{z}_1, \dots, \bar{z}_N) d\lambda_m(\bar{z})$$

$$+ \sum_{j=1}^N \hat{f}(-\bar{z}_j) g_{N+1}(\bar{z}_1, \dots, \cancel{\bar{z}_j}, \dots, \bar{z}_N)$$

where $\cancel{\bar{z}_j}$ means that this variable is omitted.

The above $\underline{\Phi}$ & the quantum field satisfies WQFT axioms & indeed is a WQFT now. (Checking is direct verification which is omitted here),

Another reason why we describe fields as operator valued distributions & not merely operator valued maps:

Prop:

Let $\underline{\Phi}$ be a field in a WQFT which can be realized as a map $\underline{\Phi} : M \rightarrow \mathcal{O}$ where $\underline{\Phi}^*$ belongs to the fields of the WQFT too. Then

$\underline{\Phi}(x) = c \mathcal{I}$ is the constant operator for some $c \in \mathbb{C}$ (ie) nothing interesting happens).

